Surface Area \& Volume of the Six Basic 3D Images of Plane Euclidean Geometry. All answers for Surface Area \& Volume must have the correct labels.

Sphere: $\mathrm{TSA}=4 \pi \times(\text { radius })^{2}$	Cylinder: TSA $=2 \pi \times(\text { radius })^{2}+\mathrm{CxA}$	Cone: $\mathrm{TS} A=\boldsymbol{\pi}(\text { (radius })^{2}+1 / 2 \mathrm{CxS}$
Total Surface Area $=4 \pi \mathrm{r}^{2}$	$\text { Total Surface Area }=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rA}$	$\begin{gathered} \text { Total Surface Area }=\pi r^{2}+ \\ 1 / 2(2 \pi r)(S) \end{gathered}$
Sphere: $\mathrm{V}=(4 / 3) \pi \times(\text { radius })^{3}$	Cylinder: $\mathrm{V}=$ base area \times height	
$\text { Volume }=4 / 3 \pi r^{3}$	$\text { Volume }=\left(\pi r^{2}\right) \times \mathrm{A}$	Cone: $\mathrm{V}=(1 / 3) \times$ base area \times Altitude $\text { Volume }=1 / 3\left(\pi r^{2}\right)(\mathrm{A})$

$\mathrm{S}=$ side dimenstion	Length, Width, Height	$\mathrm{S}=\text { Side } \quad \mathrm{A}=\text { Altitude } \mathrm{B}=\text { Base }$
Cube: $\mathrm{TSA}=6$ (side dimension) ${ }^{2}$	Prisim: $\mathrm{TSA}=2(\mathrm{lw})+2(\mathrm{wh})+2(\mathrm{lh})$	$\underline{\text { Pyramid }}$ TSA $=$ base area +4 (TriangleAreas)
Total Surface Area $=6 \mathrm{~S}^{2}$	Total Surface Area $=2 \mathrm{LW}+2 \mathrm{WH}+2 \mathrm{LH}$	Total Surface Area $=B^{2} \times 4(1 / 2 \times B x S)$
Cube: $\mathrm{V}=\left(\right.$ side dimension) ${ }^{3}$	Prism: V $=$ base area \times height	Pyramid: $\mathrm{V}=(1 / 3) \times$ base area \times altitude
Volume $=S^{3}$	Volume $=(1) \times(\mathrm{w}) \times(\mathrm{h})$	Volume $=1 / 3\left(\mathrm{~B}^{2}\right) \times(\mathrm{A})$

