## <u>Surface Area</u> & <u>Volume</u> of the Six Basic 3D Images of Plane Euclidean Geometry. All <u>answers</u> for Surface Area & Volume <u>must have</u> the correct labels.



 $C = 2 \pi r = \pi d$ 

**Sphere**:  $TSA = 4\pi \times (radius)^2$ 

Total Surface Area =  $4 \pi r^2$ 

**Sphere**:  $V = (4/3)\pi \times (radius)^3$ 

Volume =  $4/3 \pi r^3$ 



<u>Cylinder</u>:  $TSA = 2\pi \times (radius)^2 + CxA$ 

Total Surface Area =  $2 \pi r^2 + 2 \pi r A$ 

**Cylinder**:  $V = base area \times height$ 

Volume =  $(\pi r^2) \times A$ 



 $C = 2 \pi r$  S = Side A = Altitude

Cone:  $TSA = \pi (radius)^2 + \frac{1}{2} CxS$ 

Total Surface Area =  $\pi r^2$  +  $\frac{1}{2}(2\pi r)(S)$ 

**Cone**:  $V = (1/3) \times \text{base area} \times \text{Altitude}$ 

Volume =  $1/3 (\pi r^2) (A)$ 



S = side dimenstion

Length, Width, Height



S = Side A = Altitude B = Base

<u>**Cube**</u>: TSA = 6 (side dimension)<sup>2</sup>

Total Surface Area =  $6 S^2$ 

Cube:  $V = (side dimension)^3$ 

Volume =  $S^3$ 

**<u>Prisim</u>**: TSA = 2(lw) + 2(wh) + 2(lh)

Total Surface Area = 2LW + 2WH + 2LH

**Prism**:  $V = base area \times height$ 

Volume = (1) x (w) x (h)

 $\underline{Pyramid}$ :TSA = base area + 4(TriangleAreas)

Total Surface Area =  $B^2 \times 4(1/2xBxS)$ 

**<u>Pyramid</u>**:  $V = (1/3) \times \text{base area} \times \text{altitude}$ 

Volume =  $1/3 (B^2) x (A)$ 

Tom Love

**Malone College** 

Spring 2006