$$
\begin{aligned}
& \text { * Creation of Linear Functions from Two Given Points * } \\
& \begin{array}{c}
\text { Euclidean Geometry states that Two Points determine a Line } \\
\text { therefore given two points in a Rectangular Coordinate System }
\end{array} \\
& \hline \text { a Linear Function can be created with one specific equation. } \\
& \text { The Standard Form for a Linear Function is: } \quad \text { Ax + By }=\mathbf{C} \\
& \text { Point Slope Form for a Linear Function is: } \quad y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

The Slope, which is defined as the Rise / Run, can be determined by the difference of the Y values over the difference of the X values. Given two points (ordered pairs) in a Rectangular Coordinate System. Therefore Slope is defined as follows: $\mathbf{m}=\left(\mathbf{Y}_{2}-\mathbf{Y}_{1}\right) /\left(\mathbf{X}_{\mathbf{2}}-\mathbf{X}_{1}\right)$

Given: $\mathrm{P}_{2}=(-3,+1) \& \mathrm{P}_{1}=(+2,-3)$ Determine equation of a Linear Function Slope as defined as Rise / Run:m $=(+1--3) /(-3-+2)=(+4) /(-5)=-4 / 5$

Using Slope Relation again: $\quad\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right)=\mathrm{m}\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right) \quad$ and either of the points. $\left(\mathrm{Y}_{2}--3\right)=(-4 / 5)\left(\mathrm{X}_{2}-+2\right) \quad \mathrm{Y}+3=-4 / 5(\mathrm{X}-2) \quad+5 \mathrm{Y}+15=-4 \mathrm{X}+8$

Therefore the Linear Function for the given two points: $+4 \mathrm{X}+5 \mathrm{Y}=-7$
Check by determing and checking the X and Y intercepts.
\#
Given: $\mathrm{P}_{2}=(+1,+2)$ and $\mathrm{P}_{1}=(-3,-2) \quad$ Determine the equation of a Linear Function
Slope as defined as Rise / Run:m $=(+2--2) /(+1--3)=(+4) /(+4)=+1$
Using Slope Relation again: $\quad\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right)=\mathrm{m}\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right) \quad$ and either of the points.
$\left(\mathrm{Y}_{2}--2\right)=(+1)\left(\mathrm{X}_{2}--3\right) \quad \mathrm{Y}+2=+1(\mathrm{X}+3) \quad+\mathrm{Y}+2=+\mathrm{X}+3$

Therefore the Linear Function for the given two points: $-\mathbf{X}+\mathbf{Y}=+\mathbf{1}$
Check by determing and checking the X and Y intercepts.

