@ Simple Lesson on Exponents: Begin Lessons with a few Inquiry Questions! @ Exponents or Powers can be thought of as Special Multiplication!
$4^{0}=1 \quad 4^{1}=4 \quad 4^{2}=16 \quad$ @ $\quad 7^{0}=1 \quad 7^{1}=7 \quad 7^{2}=49 \quad @ \quad 9^{0}=1 \quad 9^{1}=9 \quad 9^{2}=81$

Any Number to a 0 Power is 1! Any Number to a 1 Power is itself! Any other Power is Repeated Multiplication!
$4^{2}=16$ since $4 \times 4=16$
$7^{2}=49 \quad$ since $7 \times 7=49$
$9^{2}=81$ since $9 \times 9=81$

Combine Exponential Concepts into ASMD problems to promote success and excitement!

$$
9^{0}+6^{2}=
$$

\qquad

$$
7^{2}-2^{1}=
$$

$8^{0} \times 4^{2}=$ \qquad $6^{2} / 3^{1}=$
@ Simple Lesson on Radicals: Begin Lessons with a few Inquiry Questions! @ Radicals or Square Roots can be thought of as a Special Division!
$\begin{array}{llllllllll}\sqrt{1} & \sqrt{4} & \sqrt{9} & \sqrt{16} & \sqrt{25} & \sqrt{36} & \sqrt{49} & \sqrt{64} & \sqrt{81} & \sqrt{100}\end{array}$

$$
\begin{array}{ccrll}
\sqrt{9}=3 & \text { since } 3 \times 3=9 & \sqrt{36}=6 & \text { since } 6 \times 6=36 & \sqrt{81}=9 \\
\sqrt{4}=? & \text { Why? } & \sqrt{25}=? \quad \text { Why? } 9 \times 9=81 \\
\sqrt{2} & \sqrt{64}=? \quad \text { Why? }
\end{array}
$$

Combine Basic Radical Concepts into ASMD problems to promote success \& excitement!
$\sqrt{36}+\sqrt{25}=$ \qquad $\sqrt{49}-\sqrt{4}=$ $\sqrt{1} \times \sqrt{16}=$ \qquad $\sqrt{81} / \sqrt{9}=$ \qquad

