@ Simple Lesson on Exponents: Begin Lessons with a few Inquiry Questions! @ **Exponents or Powers can be thought of as Special Multiplication!**

$$4^0 = 1$$

$$4^1 = 4$$

$$4^2 = 16$$

$$4^0 = 1$$
 $4^1 = 4$ $4^2 = 16$ **a** $7^0 = 1$ $7^1 = 7$ $7^2 = 49$ **a** $9^0 = 1$ $9^1 = 9$ $9^2 = 81$

$$7^1 = 7$$

$$7^2 = 49$$

$$9^0 = 1$$

$$9^1 = 9$$

$$9^2 = 81$$

Any Number to a 0 Power is 1! Any Number to a 1 Power is itself! Any other Power is Repeated Multiplication!

$$4^2 = 16$$
 since $4 \times 4 = 16$

$$7^2 = 49$$
 since $7 \times 7 = 49$

$$4^2 = 16$$
 since $4 \times 4 = 16$ $7^2 = 49$ since $7 \times 7 = 49$ $9^2 = 81$ since $9 \times 9 = 81$

Combine Exponential Concepts into ASMD problems to promote success and excitement!

$$9^0 + 6^2 =$$
 $6^2 / 3^1 =$ $6^2 / 3^1 =$

$$7^2-2^1=$$

$$8^0 \times 4^2 =$$

$$6^2 / 3^1 = \underline{\hspace{1cm}}$$

@ Simple Lesson on Radicals: Begin Lessons with a few Inquiry Questions! @ Radicals or Square Roots can be thought of as a Special Division!

$$\sqrt{1}$$

$$\sqrt{4}$$

$$\sqrt{9}$$

$$\sqrt{16}$$

$$\sqrt{25}$$

$$\sqrt{36}$$

$$\sqrt{49}$$

$$\sqrt{1}$$
 $\sqrt{4}$ $\sqrt{9}$ $\sqrt{16}$ $\sqrt{25}$ $\sqrt{36}$ $\sqrt{49}$ $\sqrt{64}$ $\sqrt{81}$ $\sqrt{100}$

$$\sqrt{100}$$

$$\sqrt{9} = 3$$
 since $3 \times 3 = 9$ $\sqrt{36} = 6$ since $6 \times 6 = 36$ $\sqrt{81} = 9$ since $9 \times 9 = 81$

$$\sqrt{36} = 6$$
 since 6 x 6 = 36

$$\sqrt{81} = 9$$
 since $9 \times 9 = 81$

$$\sqrt{4} = ?$$
 Why?

$$\sqrt{25} = ?$$
 Why?

$$\sqrt{4} = ?$$
 Why? $\sqrt{25} = ?$ Why? $\sqrt{64} = ?$ Why?

Combine Basic Radical Concepts into ASMD problems to promote success & excitement!

$$\sqrt{36} + \sqrt{25} =$$

$$\sqrt{36} + \sqrt{25} =$$
 $\sqrt{49} - \sqrt{4} =$ $\sqrt{1} \times \sqrt{16} =$ $\sqrt{81} / \sqrt{9} =$

$$\sqrt{81}$$
 / $\sqrt{9}$ = ____

Thomas Love 21st Century Learning Solutions, Inc.

2006/2007